

Extraction and purification of metabolites from microalgae: some insights in choice and ecodesign of processes

Pr Luc Marchal

Head of Process and Bioprocess Engineering dpt (Polytech Nantes) Scientific ref of CPC Engineering Business Unit of Capacités SAS Biorefinery team of GEPEA Lab

Bioprocess Applied to Microalgae team Up-stream – Mid-stream – Down-stream

V Nantes V Université

POLYTECH ALGOSOLIS

Graduate school of engineering of the university of Nantes

<image>

- ➔ Photobioreactor engineering
- Process integration (biorefinery)
- → Wet biomass fractionation
 - Mechanical cell disruption
 - Membrane separation
 - Liquid-liquid extraction
 - Centrifugal Partition
 Chromatography
 - Scale-up

GEPEA

MICROALGAE R&D FACILITY

- microalgae are identified as low impact renewable resources
- → take care of other resources (process facilities)
- huge impact on BIOPROCESSES

(1 of the 10 bottlenecks)

- choice (*technologies*)
- design (innovation, intensification, hybridation, integration, recycling)
- development (mass and energy consumption)

3 approaches for microalgae DSP eco-design :

- Following the biological rythm batch, continuous or sequential ?
- Manage the water dry or wet processing ?
- Extraction/Purification without solvent alternatives, green solvents

→ Batch, sequential or continuous process ?

Large-scale biomass production in solar conditions Biomass composition, density... <u>depend on the night/day time</u>

➔ In case of sequential mode, is there a right period for harvesting and processing ?

→ Dry or Wet processing ?

High dilution at PBR outlet (<1% dw)

→ For pigments extraction a dry route is convenient (*higher value*) \rightarrow In some cases (soluble protein fractions, EPS, biodiesel) wet route is advantageous

→In wet route, **cell disruption** is the controlling step

SEQUENTIAL PROCESS, INTEGRATION and ENERGY MINIMUM

Nannochloropsis oceanica

(c) Depleted cutlure

SEQUENTIAL PROCESS, INTEGRATION and ENERGY MINIMUM

Nannochloropsis oceanica

Vladimir Heredia

Best harvesting period 5h after the end of de day

SEQUENTIAL PROCESS, INTEGRATION and ENERGY MINIMUM

Rosine Zinkoné (2018)

Synchronization of *N. oleoabundans:*

- Cycles de 16h day/ 8h night
- Synchronization after 4 cycles

Daughter Cells 24h

Average of 4 daughter cells /

SEQUENTIAL PROCESS, INTEGRATION and ENERGY MINIMUM

Solvent Solvent Extraction Residue Residue

Extraction and purification with or without solvents ?

- ➔ Solutions for water soluble molécules : membrane concentration, fractionation
- ➔ For other metabolites : what solvents are in accordance with bioressource valorization ? In accordance with the application field ?

CO₂, green (organic) solvents, NaDES Low volatility phases = des-extraction step ? Carrier solvent ?

→ Green solvent = green process ?

SOLVENTS AND TECHNOLOGIES FOR EXTRACTION OF LIPIDS or PIGMENTS

Vladimir Heredia (2020)

Nice performances of lipids extraction in wet route

Solubility with water that make solvent recovery more difficult

SOLVENT CONSUMPTION REDUCTION (PROCESS INTENSIFICATION by CENTRIFUGATION)

BXP

CPC

BXP : one stage, continuous

Extraction yields: 75-80% Limitations:

Low dw concentrations at process inlet (5-6 g/l) Optimal Solvent Ratio : **1 Specific solvent need 172 g/g**_{ms}

CPC : one stage, discontinuous

Green solvents can be implemented

8x Solvent reduction by technology → Still some limitations

Extraction yields: >80% Limitations:

Low dw concentrations at process inlet (5-6 g/l) Optimal Solvent Ratio : **0.07 Specific solvent need 23 g/g**_{ms}

	Heptane	m-THF
Density	0,68	0,86
Bp (°C)	98,4	79,0
Solubility in water	3,4 mg/l	130 g/l (décroit avec la T)
lipids recovery	80 %	150 %
TAG recovery	35 %	83 %

CONCLUSIONS :

- Microalgae can have a growing production cycle controlled by solar day/night cycle
- This has a direct effect on microalgae composition, size and mechanical robustness
- Some strategy for optimal metabolite release and disruption energy minimization can be proposed for <u>sequential production</u>
- Membrane concentration, fractionation is efficient for biopolymers, hydrolysates
- For lipids, <u>alternative (green) solvents</u> can be proposed for extraction or purification

- For low volatility solvents (glyOH, oils, NaDES): solvent recycling issues

THANK YOU FOR YOUR ATTENTION SEE YOU SOON in SAINT NAZAIRE !

Pr Luc MARCHAL Head of Process and Bioprocess dpt Polytech Nantes Bd de l'Université - 44600 ST-NAZAIRE

tel : +33 677-222-419 mail: <u>luc.marchal@univ-nantes.fr</u>

