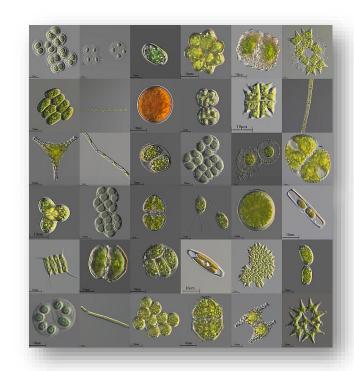


Microalgae Strain Catalogue

The University of Manchester

Gonzalo M. Figueroa-Torres, Elisabeth Bermejo-Padilla, Jon Pittman, Constantinos Theodoropoulos



EnhanceMicroAlgae project

WP7 – Knowledge; research and development; towards value applications.

<u>Provide SMEs with protocols for the reliable bulk growth of microalgae</u> of contrasting types to yield protein-rich or carbohydrate/lipid rich biomass. This will support food industries and also production of fine chemicals.

✓ WP7 - Action 1: Publicly accessible microalgae screening.
On-line database containing information about microalgal strains of potential interest for commercial applications.

Microalgae Strain Catalogue: publicly accessible microalgae tool


Polysaccharides

Human nutrition

Functional food

Pharmaceutical and therapeutical applications

Source of energy

Pigments

Cosmetics

Human nutrition

Feed

Pharmaceutical and therapeutical applications

Proteins

Human nutrition Functional food

Lipids

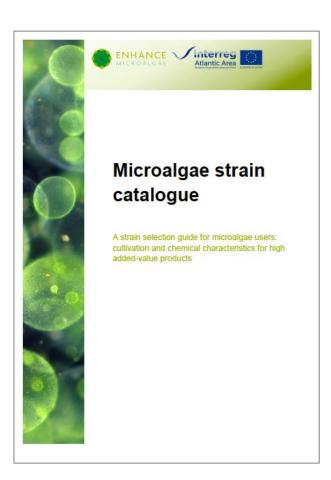
Pharmaceutical and therapeutical applications

Aquaculture

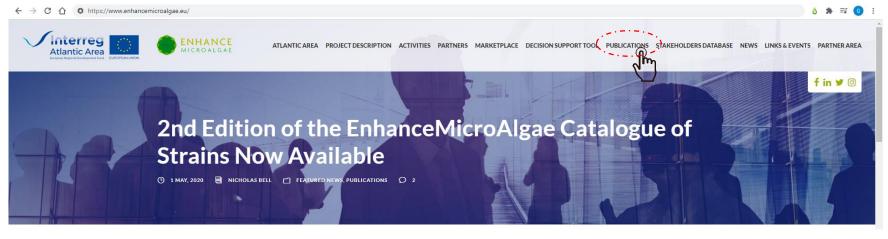
Source of energy

Bioactive Compounds

Antibiotic/antiviral


Antitumor

Diagnostic agents


EnhanceMicroAlgae Project Tool

Microalgae strain catalogue

Available in the EMA website within the project <u>publications</u>:

Authors:

Gonzalo M. Figueroa-Torres, Elisabeth Bermejo-Padilla, Jon K. Pittman, Constantinos Theodoropoulos

The University of Manchester

Strains Selection for the 1st Edition

Strain characterisation and literature survey to develop the microalgae strain catalogue

Strains evaluated include:

Anabaena cylindrica

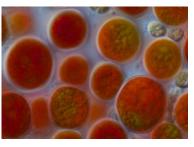
Arthospira platensis

Botryococcus braunii

Chlorella vulgaris

Dunaliella salina

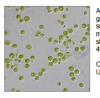
Dunaliella tertiolecta


Haematococcus pluvialis

Microcystis sp.

Nannochloropsis oculata

Oscillatoria sp.


Phaeodactylum tricornutum

8. Chlorella soro

show a br 45°C ³⁰. Commonly UTEX 123

Cultivation characteristic

Micro

catal

A strain se

cultivation added-value

Strain	Cultivation Condition:
UTEX 1230 ²	System: PBR Medium: 3N-BBM Temperature: 22°C Light: 150 µmol/m²/s, 16h L: 8h D
IBVF 211-32	System: 2 L stirred tan reactor (STR) Medium: Sueoka medium Carbon source: CO ₂ , and acetate Temperature: 25°C Light: 100 µmol/m²/s, Continuous light
UTEX 1602 32	System: 250 mL flasks Medium: Kuhl medium Carbon source: 1 % CO ₂ , glucose Temperature: 25°C Light: 100 µmol/m²/s, Continuous light
UTEX 2805 ³³	System: 250 mL flasks Medium: synthetic medium Temperature: 27°C Light: 60 µmol/m²/s, L:D cycle nd

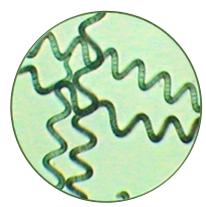
ENHANCE MICROALGAE

Biomass characteristics

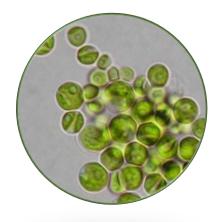
Biomass composition	Element composition	Pigments	Fatty acids
56% protein ² 22% lipid 17% carbohydrate 6.65% lipids (on CO ₂) 32 31.58% lipids (on glucose) 40% lipids ³¹	46% C ² 2% N C/N ratio 21	32.4 mg/g total chlorophyll ² 1.2 mg/g beta- carotene 7.1 mg/g lutein	C16:0 22.0% ² C16:1 4.3% C16:2 11.5% C16:3 5.1% C18:0 3.5% C18:1 11.3% C18:2 31.1% C18:3 9.1% other 2.1% C16:0 20.99% ³² C16:1 5.56% C18:0 4.82% C18:1 2.95% C18:1 2.95% C18:3 33.31%

Additional biomass considerations:

Supplementation of glucose as a carbon source can increase cell density, biomass production and total lipid yield but decreases protein abundance and chlorophyll biosynthesis ²⁹.



Some of the most promising microalgae species at a comercial level included in the Strain Catalogue 1st edition

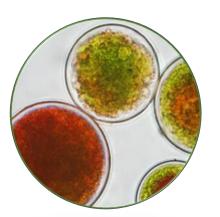

Arthrospira platensis

- It grows best at a high pH (9-11) and temperatures (35-37 °C).
- Rich in proteins and pigments (phycocyanin).
- Chemical composition:
 46–71% protein;
 8-16% carbohydrate;
 4-9% lipids.
- Areas of application: food and nutritional supplement; cosmetics.

Chlorella vulgaris

- Robust growth.
- Rich in proteins and lipids.
- Chemical composition:
 11–58% protein;
 12-28% carbohydrate;
 2-46% lipids.
- Areas of application: food, nutritional supplement; feed; biofuel.

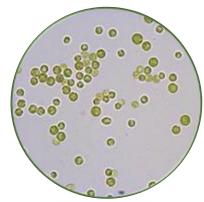
Some of the most promising microalgae for commercial applications included in the Strain Catalogue 1st edition


Dunaliella salina

- It is extremely salt-tolerant.
- Potential as β-carotene producer (up to 14% of dry biomass).
- Chemical composition:
 49–57% protein;
 4-32% carbohydrate;
 6-8% lipids.
- Areas of application: food and nutritional supplement; feed; cosmetics.

Haematococcus pluvialis

- It is considered as the best natural source of astaxanthin.
- Chemical composition:
 Protein: 29–45% (green stage);
 17–25% (red stage);
 Carbohydrate: 15-17% (green stage); 36-40% (red stage);
 Lipids: 20-25% (green stage);
 32-37% (red stage).
- Areas of application: food, nutritional supplement; aquaculture; cosmetics.



Some of the most promising microalgae for commercial applications included in the Strain Catalogue 1st edition

Nannochloropsis oculata

- It is widely distributed in oceans worldwide.
- Rich in polyunsaturated fatty acids.
- Chemical composition:
 40-49% protein;
 6-10% carbohydrate;
 30-33% lipids.
- Areas of application: nutritional supplement; food for larval and juvenile marine fish; biofuel.

Phaeodactylum tricornutum

- It is a marine diatom strain with ability to produce high yields of fatty acids.
- Chemical composition:

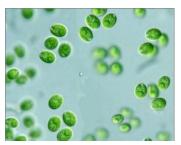
Protein: 33-42%;

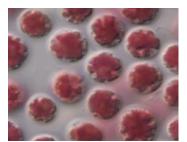
Carbohydrate: 9-24%;

Lipids: 26-34%.

 Areas of application: food, nutritional supplement; feeds; biofuel.

Strains Selection for the 2nd Edition

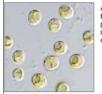




Update of the Strain Catalogue including 10 more microalgae strains.

Strains include in the 2nd Edition:

Auxenochlorella protothecoides Chaetoceros calcitrans Chamydomonas reinhardtii Chromochloris zofingiensis Isochrysis galbana Porphyridium purpureum Rhodomonas sp. Scenedesmus obliquus Scenedesmus quadricauda Tetraselmis subcordiformis



Microalgae strain catalogue

A strain selection guide for microalgae users: cultivation and chemical characteristics for high added-value products

14. Isochrysis galbana

A eukaryotic marine microalga which is a species of Haptophyta. polyunsaturated fatty-acid composition), is of substantial interest

Cultivation characteristics

Strain	Cultivation Conditions	Mean biomass productivity (g/L/d)	Maximum productivity (g/L/d)	Maximum production (g/L)
nd ⁶² from Marine Microalgae Research Center, Ocean University of China	System: Erlenmeyer flasks Medium: f/2 Temperature: 23°C Light: 4.0 mW/cm², 16 h L: 8 h D	nd	nd	1.69x10 ⁷ cells/mL (500 µmol/L phosphorous)
nd ⁶³ Aquatic Reeearch Laboratory at Isfahan University of Technology, Isfahan, Iran	System: 10 L carboys Medium: Walne's medium Temperature: 25°C Light: 80 µmol/m²/s, 12 h L: 12 h D	nd	nd	1.55x10 ⁷ cells/mL (144mg/L nitrogen)

Some of the most promising microalgae for commercial applications included in the 2nd edition

Isochrysis galbana

- Rich in polyunsaturated fatty acids.
- It produces high content of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA).
- Chemical composition: 30–36% protein; 33-40% carbohydrate; 30% lipids.
- Areas of application: animal nutrition, aquaculture; biofuel.

Porphyridium purpureum

 It is a source of phycobiliproteins, sulphated EPS and polyunsaturated fatty acids.

- Chemical composition:
Protein: 28–39%;
Carbohydrate: 40-57%;
Lipids: 9-14%.

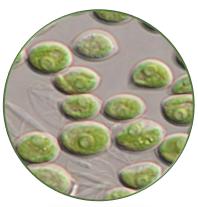
Areas of application: food, nutraceuticals; pharmaceuticals;

cosmetics.

Some of the most promising microalgae for commercial applications included in the 2nd edition

Rhodomonas sp.

- It is an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid DHA.
- Chemical composition:
 35–55% protein;
 4-8% carbohydrate;
 18-39% lipids.
- Areas of application: aquaculture.


Scenedesmus obliquus

- It is one of the most widely used lipid-producing microalga.
- Chemical composition:
 Protein: 30–37%;
 Carbohydrate: 20, 28%;

Carbohydrate: 20-38%;

Lipids: 20-37%.

 Areas of application: aquaculture; human nutrition; biofuel.

Other resources

The catalogue includes:

- A compilation of growth media recipes for microalgae.
 - · Artificial Seawater (ASW) medium
 - Blue-Green medium (BG11)
 - Bold's Basal Medium (BBM) and 3N-BBM
 - Chu 13 medium (Modified)
 - Conway medium
 - Detmer medium (DM) modified
 - f/2 medium
 - f/2+Si (Guillard's medium for diatoms)
 - Jaworski's Medium (JM)
 - Kuhl medium
 - SOT medium
 - Sueoka medium
 - · Walne's medium
 - Zarrouk medium
- Culture collections.

A.2. Blue-Green medium (BG11)

Mix stock solutions and bring to 1 L; adjust pH to 7.1 (with NaOH or HCI).

BG11 medium components and concentrations¹⁰³

Component	Stock solution g per 500 mL dH ₂ O	Quantity used for medium
NaNO ₃	75	10 mL
K₂HPO₄	2	10 mL
MgSO₄·7H₂O	3.75	10 mL
CaCl₂•2 H₂O	1.80	10 mL
Citric acid	0.3	10 mL
Ammonium ferric citrate green	0.3	10 mL
EDTA·Na₂	0.05	10 mL
Na ₂ CO ₃	1	10 mL
Trace metals solution	See recipe below	1 mL

Trace metals solution (also known as A5 + Co Trace metals solution) 103

Component	Stock solution qty per litre dH ₂ O
H ₃ BO ₃	2.860 g
MnCl ₂ ·4H ₂ O	1.810 g
ZnSO₄·7H₂O	0.220 g
CuSO₂-5H₂O	0.08 g
Na₂MoO₂•2H₂O	0.39 g
Co(NO ₃) ₂ ·6H ₂ O	0.05 g

This is a seawater medium, prepared by bringing up the final volume to 1 L with filtered natural seawater. Adjust pH to 8 with 1 M NaOH or HCl.

f/2 medium components and concentrations 103

Component	Stock solution qty per 1 L dH₂O	Quantity used for medium
NaNO ₃	75 g	1 mL
NaH₂PO₄·H₂O	5.65 g	1 mL
Trace metals solution	See recipe below	1 mL
Vitamins solution	See recipe below	1 mL

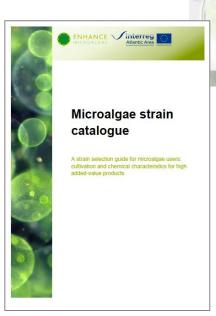
f/2 trace metals solution 103

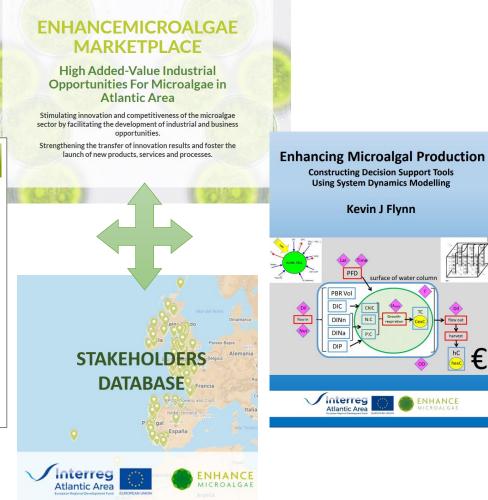
Component	Stock solution qty per L dH₂O
Na₂EDTA	4.16 g
FeCl ₃ ·6H ₂ O	3.15 g
CuSO₄•5H₂O	0.01 g
ZnSO₄•7H₂O	0.022 g
CoCl ₂ ·6H ₂ O	0.01 g
MnCl₂·4H₂O	0.18 g
Na₂MoO₄·2H₂O	0.006 g

Vitamins solution 103 (filter-sterilise and store frozen).

Component	Stock solution Qty per L ⁻¹ dH ₂ O)
Cyanocobalamin (Vitamin B ₁₂)	0.0005 g
Thiamine HCI (Vitamin B ₁)	0.1 g
Biotin	0.0005 g

Page | 69





Microalgae Strain Catalogue 3rd edition:

- **Expanded information** of the current microalgae strains.
- Addition of **new** microalgae **species**.
- Link the catalogue with the EMA virtual tools to support researchers and SMEs with microalgae production and sector development.

