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Abstract

In the last few decades, consumers' growing atternt the close relationship between health
and nutrition is emerging as a new trend, mostlyarding the incorporation of natural
ingredients into food. Among those ingredients,roatgae are considered as innovative and
promising compounds, rich in valuable nutrients dmolactive molecules. In the present
work, 3D printed cookies were fortified with the aroalgaArthrospira platensisaiming at
developing a new functional food with antioxidambperties A. platensisantioxidants were
recovered using ultrasound-assisted extractiorydndalcoholic solutions. Ethanol/water and
biomass/solvent ratios were optimised through aigdesf Experiments (DOE) approach,
using the antioxidant activity (ORAC and ABTS) atmtal phenolic content (TPC) as
response variables. The highest ORAC, ABTS and V&l@es were observed in the extract
obtained with 0 % ethanol and 2.0 % biomass; thbs extract was chosen to be
incorporated into a printable cookie dough. Thrééement incorporation approaches were
followed: (1) dried biomass, (2) freeze-dried axitiant extract and (3) antioxidant extract
encapsulated into alginate microbeads to enhaneestibility to heat, light, and oxygen
during baking and further storage. All dough foratidns presented shape fidelity with the
3D model. The cookies had aw values low enoughetanixrobiologically stable, and the
texture remained constant after 30 days of stordymeover, the extract encapsulation
promoted an improvement in the ORAC value and cokiability when compared to all
other formulations, revealing the potentialfofplatensidor the development of a functional
3D food-ink.

Keywords. Arthrospira platensisEncapsulation; Food-ink; Functional food; 3D fing.
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71 1. Introduction
72
73 Many nutrition concepts have changed during the f@s decades, and the food

74 industry has made a significant effort to followeth and adapt their products to these
75 changes. Traditionally, the primary role of dietswi@ provide enough nutrients to meet
76  metabolic requirements while giving consumers dirfgeof satisfaction and well-being.
77  Nowadays, however, it is established that beyondtimg nutritional needs, the diet may
78  modulate various bodily functions and may play idetntal or beneficial roles in some
79 diseases (Bigliardi & Galati, 2013; Roberfroid, PP0in this regard, it is possible to observe
80 an increasing consumer’s health consciousness emdrt for healthy foods - facts that are
81  stimulating innovation and new product developmarthe food industry. This trend is also
82 responsible for an ever-increasing worldwide irdefa functional food, which also can be
83 explained by the increasing cost of the health eaue the steady boost of life expectancy
84  (Betoret, Betoret, Vidal, & Fito2011; Lopez-Rubio, Gavara, & Lagaron, 2006; Plaza,
85  Herrero, Cifuentes, & Ibanez, 2009; Sun, Zhou, Ymng, & Lin-ya, 2018).

86 Functional food is a natural or processed food ¢batains known biologically-active
87 compounds which, when in defined quantitative analitative amounts, provide a clinically
88 proven and documented health benefit; and, hencesedul tool for the prevention,
89 management and treatment of diseases. There dearamge of compounds that have already
90 been incorporated into functional foods, with pardar attention being given to ingredients
91 from natural resources (Day, Seymour, Pitts, Kokc&a Lundin, 2009; Herrero, Martin-
92  Alvarez, Senorans, Cifuentes, & Ibanez, 2005).

93 Microalgae can be considered an innovative and giom food ingredient, rich in
94 nutrients such as high-value proteins, long-chatyymsaturated fatty acids, carotenoids,
95 vitamins, minerals, and phenolic compounds, as aglbther bioactive molecules (Gouveia,
96 Marques, Sousa, Moura, & Bandarra, 2010). Amonmil#ethrospira platensiss one of the
97 main species exploited by the food and nutritiotustries, being traditionally used as food
98 by different cultures. This microorganism is a bgreen filamentous prokaryotic
99  cyanobacterium well known for its unique compositicomprising not only up to 70 % of
100 protein containing all the essential amino acidg,ddso polysaccharides, vitamin B12, C, E,
101  and y-linolenic acid (GLA). Furthermore, it is a souroé potent antioxidants, such as

102  carotenoids, polyphenols and phycobiliproteinsraug of photosynthetic pigments majority
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represented by C-phycocyanin, which are relatechumerous reported pharmacological
properties; including anticancer, antidiabetes, ab@grotective and anti-inflammatory
(Czerwonka et al., 2018; Da Silva et al., 2019; Han, Qi, & Zhang, 2019; Plaza et al.,
2009; Soni, Sudhakar, & Rana, 2017).

The incorporation of microalgae biomass into tiadal foods (e.g. breakfast cereals,
bread, pasta, cookies, gelled desserts, and b@ggraghich are primarily consumed on a
daily basis, has been researched and several psotdage already been launched in the
market (Gouveia et al., 2010; Lafarga, 2019). Intipalar, cookies are considered a
convenient dense snack food, offering a valuablgplementation vehicle for nutritional
improvement as they are widely accepted and condiyeall age groups. There is a trend
for research and innovation in this market segmehich promotes the inclusion of healthy
ingredients into cookies, such as antioxidantgmihs, minerals, proteins and fibers (Batista
et al., 2017; Nogueira & Steel, 2018; Saponjad.cPa16).

Besides the change in consumer’s attitudes towatdsalthier diet, it is noteworthy
that food ingredients and their nutritional needsyvamong individuals, especially children,
elderly and athletes (Tan, Toh, Wong, & Li, 201B)is context motivates a growing market
for personalized healthy nutrition, which aimsaddr food and diets specifically based on an
individual's health condition. In light of this,rée dimensional (3D) food printing has gained
increasing attention for its distinctive potenttal create complex geometric structures,
enabling mass customisation while having economit environmental benefits. The main
advantage of this emerging technology is being bfgersonalize food by tailoring nutrition
in a novel multi-flavoured, coloured and texturédisture, allowing the incorporation of a
broad range of ingredients (Dankar, Haddarah, O®epulcre, & Pujola, 2018; Liu et al.,
2018a; Pérez, Nykvist, Bragger, Larsena, & Falkgh®019; Sun et al., 2018).

Considering the above mentioned, this study aimeddeveloping 3D printed
functional cookies fortified with antioxidants extted fromA. platensisto create a new
functional food based on an innovative 3D food-iblue to the inherent instability of C-
phycocyanin, carotenoids and other antioxidant aumgds present in this microalga, the
encapsulation of its extract in alginate microbeads proposed as a way of improving the
cookies stability to heat, light, and oxygen durthg baking and further storage. Parameters
such as colour, texture, water activity and antlert potential were investigated and
compared with the freeze-dried extract and wholemiaiss incorporation into the cookie

dough.
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2. Materialsand Methods

2.1 Materials

Arthrospira platensisbiomass was obtained commercially in a specialigtate
(Braga, Portugal). Potassium phosphate dibasicpatassium di-hydrogen phosphate were
purchased from Fisher Bioreagents (Pittsburgh, USfd AppliChem (Darmstadt,
Germany), respectively. All other reagents werecpased from Sigma-Aldrich (St. Louis,

MO, USA). All solvents and reagents used were alwital grade.

2.2 Optimization ofA. platensisantioxidants extraction

A. platensisantioxidants were recovered using ultrasound-asbigixtraction in
hydroalcoholic solutions. The influence of the ethlavater and biomass/solvent ratios were
assessed through a Design of Experiments (DoE)oappr using the antioxidant activity
(ORAC and ABTS) and total phenolic content (TPCyesponse variables. The lower and
upper limits for the independent variables wereedasn previously reported conditions for
extracting antioxidants fromArthrospiraspp. (Oh et al. 2011; El-Baz et al. 2013; Syaaha
al. 2015; Silva et al. 2017). Table 1 shows theedodariables and their real values far
platensisantioxidant extraction. The obtained extracts waralysed as described in Section
2.3. The extract with higher antioxidant activityasvfreeze-dried for further encapsulation

and incorporation into the cookie doughs.

Table 1.Full Factorial2* Design of Experiments foh. platensisantioxidants extraction, with two

factors and two central points. Real values in péueses.
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Run X1 (Ethanol/Total solvent ratio) X, (Microalgae mass/Volume of solvent)

1 1 (100 %) 1 (12 %)
2 1 (100 %) -1 (2 %)
3 -1 (0 %) 1 (12 %)
4 1 (0%) -1 (2 %)
5 0 (50 %) 0 (7 %)
6 0 (50 %) 0 (7 %)

2.3 Antioxidant activity and total phenolic content

The Oxygen Radical Absorbance Capacity (ORAC) efdktracts was performed in
96-well microplates, based on the method propose@wbet al. (2001) and further modified
by Davalos et al. (2004). In brief, 20 pL of diet concentrations of the extracts were
added to 120 pL of a 116.67 nmot.Lfluorescein solution prepared in 75 mmot.L-
phosphate buffer at pH 7.4. The mixture was incdbator 15 min at 37 °C and,
subsequently, 60 puL of 40 mmol.L-1 2,2 -azobis(2hyropionamidine)-dihydrochloride
(AAPH) were rapidly added using the automatic reagejector of the plate reader (Biotek
Synergy H1). A blank (Fluorescein + AAPH) prepaneidh 20 pL of phosphate buffer
instead of the extracts was also analysed, aneX mwas used as standard. Fluorescence was
recorded every 5 min after AAPH addition (excitativavelength 485 nm, emission
wavelength 520 nm) for 120 min. Results were caked based on the differences in areas
under the fluorescein decay curve between the dawokthe samples and were expressed as
umol.L* of Trolox equivalents/g sample.

The spectrophotometric analysis of ABTS radicalveaging activity was conducted
according to the method of Re et al. (1999). Birstin ABTS solution was prepared by
mixing 7 mmol.l* ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-swpic  acid)
diammonium salt with 2.45 mmolLpotassium persulfate, allowing this mixture tonstat
room temperature for 12—-16 h in the dark. Subsetjyeghe ABTS solution was diluted with
Milli-Q water to obtain an absorbance of 0.70 £20d 734 nm. In a 96-well microplate, 10
pL of the sample was added with 200 pL of the ABB&ition, and after 6 min of reaction,

the absorbance was measured at 734 nm. The scagerapacity percentages (% RadScav)
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were calculated using the Eq. 1. Results were sgpreas Trolox Equivalent Antioxidant

Capacity (TEAC) in mmol.L of Trolox per g ofA. platensisbiomass (mmol.: TEAC/g).

% RadScav=1-(Abss-Absig®)*100 (2)

Where Abss, Absb and Absc are the absorbance shinele, blank and negative control,
respectively.

The total phenolic content (TPC) of the extracts wigtermined according to the
method of Singleton et al. (1999), using the Fdliieealteu reagent (FCR) and gallic acid as
a standard. Initially, 0.5 mL of sample was mixeithvd.1 mL of Folin-Ciocalteu reagent and
vigorously stirred. After 5 min, 0.5 mL of a 7.0 86dium carbonate solution was added to
alkalinize the medium, and the mixture was allowedeact for 1 h at room temperature. The
absorbance was measured spectrophotometricallyvavalength of 760 nm, and the results
were expressed as mg of gallic acid equivalent (JGp&r g of A. platensisbiomass (mg
GAE/Q).

2.4 Preparation of the cookie dough

Control cookies were prepared according to the fbation reported by Kinet al
(2019), using wheat flour, butter, powdered sugailk and xanthan gumA. platensis
incorporation was done by replacing an equivalenbunt of wheat flour following three
different approaches: (1) direct addition of 2.0whole A. platensisdried biomass, (2)
incorporation of the freeze-dried antioxidant egtrabtained from the same amount of
biomass and (3) incorporation of an equivalent amha@i antioxidant extract encapsulated

into alginate microbeads. The dough formulatiomspaesented in Table 2.

Table 2. Cookies dough formulations fortified witififerentA. platensigorms.
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Encapsulated

Control Biomass Free Extract
Ingredients Extract

(9/1009) (9/1009) (9/1009) (9/1009)
Wheat flour 40 38 39.2 30
Butter 25 25 25 25
Powdered sugar 22 22 22 22
Milk 13 13 13 13
Xanthan gum 0.5 0.5 0.5 0.5
A. platensis 0 2 0.8* 10**

*Amount of freeze-dried extract present in 2.0 %0 \oplatensishiomass
**Incorporation of 10 % ofA. platensisalginate microbeads with an amount of extract eguthe free extract formulation.

2.4.1 A. platensiextract encapsulation

Freeze-dried\. platensiextract was encapsulated within alginate microbe¢hbugh
vibrational extrusion technique using the Bulchi &pgulator B-395 Pro® (Buchi
Labortechnik AG, Flawil, Switzerland). Briefly, a® % (w/v) sodium alginate aqueous
solution was prepared, and the freeze-dried ex{B2t w/v) was added under stirring. The
parameters selected were chosen based on the ramefs recommended conditions for
air-flow configurations: inner nozzle size of 15thand outer nozzle of 600 um, frequency
2000 Hz, electrode 1200 V, amplitude 2, airflow thBar and flow rate of 1.5 mL/min.

The beads formed were collected into a 0.1 mbthlcium chloride solution stirred
at 500 rpm. After all the alginate solution waspeissed, the beads were left at a lower
agitation rate (200 rpm) for 2 h to complete thedleaing process. The resultiAg platensis
calcium alginate microbeads were retrieved byadiiiom using a 100-um strainer and rinsed
with distilled water. Before weighting for cooki®wgh incorporation, the water excess was

removed off the microbeads with filter paper.

2.5Dough characterization
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2.5.1 Rheological analyses

Oscillatory dynamic measurements and creep-recotestg were carried out in an
HR-1 rheometer (TA Instruments, USA) equipped wahstainless steel parallel plate
geometry (40 mm diameter, 10Q0n gap) within the linear viscoelasticity domain, in
duplicate. The samples were handled gently to awbidctural damage, and they were
allowed to rest for 3 min before analysis. Tempeesweep profiles were performed in the
range of 25C-150°C at 5°C/min and Hz. Complex modulus (G*) and tanwere
evaluated.

Creep-recovery assays were carried out at 25 °@ppJyying constant stress (55 Pa)
for 360 s on the dough and allowing strain recovery600 s after load removal. The strain
was obtained as a function of time, and the datee wepresented by creep compliance:
J(t) (Pa1) = y/o, wherey ands are the strain and constant shear stress duringréep
test, respectively. The creep compliance dataefittugh samples were fitted with Burger’s

model for creep and recovery stages (Eq. 2 anelspectively).

J©e =Jo+m (1= exp(F)) + = @

Mo
J@®)r = Jmax —Jo = Jm (1 — exp (%)) (3)

where Jo (Pa-1)Jn (Pa—-1), andmax (Pa—1) represent the instantaneous, viscoelamstid,
maximum creep compliance values, respectivdly) andi (s) are the phase and average
retardation time, respectively; anglis the viscosity coefficient (Pa.s). The relatelastic
portion (%) was determined by the ratio between éggilibrium compliance and the

maximum compliance.
2.5.2 Texture measurement

The dough firmness was assessed by a uniaxial essipn assay in a Texture
Analyser TA-HD plus Stable MicroSystem (Godalmirgyrrey, UK). Cylindrical dough
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samples (12 mm diameter, 10 mm height) were corepdeat a speed of 1mm/sec, with
trigger force of 5 g up to 90 % strain level. Réswere expressed by the peak force in the

force-time graph (N.s). Measurements were repdatedimes for each formulation.

2.6 3D printing and post-processing

The cookies were produced using a 3D food prinferc(s, Byflow, Netherlands)
equipped with a paste printing head and a 1.6 menta@ nozzle. A cylinder shape (27.6
mm diameter and 6.72 mm height) was sliced (Slg8tware) to micro-extrude 6 layers,
each one with 1.12 mm thickness, through a nozzleimy at a speed of 10 mrit.sDuring
printing, flow rate and Z-offset were adjusted tiain the adequate dough weight and shape
(diameter and thickness) according to the 3D mdeieth formulation was printed at least in
triplicate.

The printed cookies were baked at 150 °C for 25. mimen, depending on the type of
experiment, the cookies were analysed in tripligatng three cookies) or in quintuplicate
(using five cookies). Measurements of height andmditer were performed in three
replicates, before and after post-processing, @rorevaluate shape fidelity. This parameter
was based on the differences between the cooksssdtical and measured dimensions, as
described in Eq. 4. The effect of baking on thekms shape was determined as the
percentual variation of the dimensions before dtet aking (Eq. 5).

Shape fidelity (%) = (Measured dimension * 100) @

Theoretical dimension

.. (Baked cookie dimension—Raw cookie dimension)*100
Variation (%) = [ ] %)

Raw cookie dimension

2.7 Cookies physical-chemical characterization
All cookies were analysed in terms of colour vaoiat water activity, texture and

antioxidant potential, 24 h after baking and aff@érdays of storage at room temperature,
protected from light.

10
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2.7.1 Colour analysis

The colour of cookies samples was measured usowoarimeter (CR-400Konica
Minolta, Inc., Tokyo, Japan). The first colour ma@sment was acquired 24 h after baking to
ensure and appropriate cooling before the readifigs.results were expressed in terms of
L*, lightness (values from 0 to 100 %Y;, redness to greenness (60 to —60, respectivety);
yellowness to blueness (60 to —60, respectivelsgpaling to the CIELab system. The total
colour dilerence AE*) between sample cookies along storage time (3@)dag well as
between raw dough and cooked samples, was detatmgiegL*, a* andb* average values,
according to the equation 6. The measurements ear@ucted using a white standakd &
93.90,a* = 0.3158b*= 0.3321), under artificial fluorescent light abro temperature. Three
replicates were analysed for each formulation, it measurement locations per cookie,
including the centre and its surrounding (Batistalg 2017).

:

AE* = [(AL")? + (Aa*)? + (Ab*)?)z (6)

2.7.2 Texture analysis

The cookies' texture was evaluated using a Texfuralyser TA-HDplus Stable
MicroSystem (Godalming, Surrey, UK) in penetratiorode, with a 2 mm cylindrical
stainless probe, a target distance of 4 mm anddspet of 0.5 mm§ The resistance to
penetration (or hardness) was measured by the foee& in the force-time graph (N.s).
Measurements were repeated five times for eachulation sample (one measurement per

cookie).

2.7.3 Water activity determination

The cookies water activityaf) was determined using an Aqualab 4TE Water Agtivit
Meter (Meter Group, Inc., Pullman, USA) at 25 + & Measurements were repeated three

times for each formulation as a crushed powder.

2.7.4 Antioxidant activity

11
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The antioxidant activity of the cookies was evabdatfollowing the methods
described in section 2.3 in triplicate; howeverthmiesults expressed per gram of cookie
instead. For the extraction of cookies antioxid@acttion, aliquots of 0.5 g of the control,
free and encapsulated extract cookies, previouslgdrwith a mortar and pestle, were mixed
with 2.5 mL of 75 mmol.L-1 phosphate buffer at pH @n a vortex for 1 min; and followed
by centrifugation at 9,000 rpm for 10 min. This g@es was repeated twice, and supernatants
were combined and filtered through a 0.45 pm swrifijer. Antioxidants from cookies
containingA. platensisbiomass were recovered by ultrasound-assistecatixtn for 1 h,
using 5 mL of 75 mmol.L-1 phosphate buffer at p# &s the solvent.

2.8 Statistical analysis

Statistical analysis of the experimental data wasfopmed through the t-test or
analysis of variance (one way ANOVA), followed byKey's Post Hoc test at a significance
level of 95 % p < 0.05), using the software GraphPad Prism 5.DreSlults were presented
as mean =* standard deviation. Design of Experim@&) and its statistical analysis were

performed using Statsoft Inc. Statisfiédversion 13).

3. Resultsand discussion

3.1 Optimization ofA. platensisaantioxidants extraction

For a practical application in the food industmgtiaxidants should be first extracted;
however, the extraction process efficiency maycffis availability (Wardhani, Vasquez, &
Pandiella, 2010). Recently, ultrasonic-assistedaetbn (UAE) has been widely employed
for the recovery of target compounds from many ratproducts due to its facilitated mass
transfer between immiscible phases, through sugieaten at low frequency. The enhanced
extraction obtained by ultrasounds is mostly atitield to the acoustic cavitation produced in
the solvent by the passage of an ultrasound waweed¥er, UAE also exerts a mechanical
effect, allowing greater penetration of solvenbitite cell wall, increasing the contact surface
area between the solid and liquid phase. As atrakel solute quickly diffuses from the solid
phase to the solvent, increasing bioactive recowdrgn compared to conventional methods

12
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(Haque, Dutta, Thimmanagari, & Chiang, 2016; Kurds&mavati, 2015; Liu, Wei, & Liao,
2013; Zou, Jia, Li, Wang, & Wu, 2013).

Various parameters play a significant role in ofting the experimental conditions
for the development of an extraction method. Exioactime, temperature and the solid-to-
liquid ratio are generally considered to be the tmodical factors that affect bioactive
recovery. The choice of an extracting solvent isoah crucial step towards extraction
optimization; different solvents will yield diffen¢ extract amounts and composition. In the
present study, water and ethanol were employectaacéon solvents for the microalga
platensisconsidering food application safety (Chaiklahaalgt2013; Zou et al., 2013).

The recovery of antioxidant compounds fragkn platensisbiomass was optimised
through a Design of Experiments (DoE) approachnguisi 2 full factorial design with 2
factors. The effect of ethanol/water and biomad#sd ratios on the antioxidant activity
(ORAC and ABTS) and total phenolic content (TPCyavanalysed as response variables
(see Table 1). All the response curves exhibiteexarellent fitting (= 0.99) and statistical
significance. The response surfaces after 30 mih Anh of ultrasound treatment are
represented in Fig. 1. It is possible to noticé tha phenolic content increased proportionally
with the amount of microalga. Additionally, incre@asg the treatment time to 1 h promoted a
higher phenolic content, which was also highv@th increasing A. platensisontent.
Nevertheless, the recovery of phenolic compounds ware efficient at 0 % ethanol
independently of the time. The ABTS exhibited aikimtrend; although in this case, the
extraction time was crucial, being the antioxidaotivity at 1 h more than 2.5-fold higher
than at 30 min. The ORAC assay corroborated the 3\B3sults, pointing out that to obtain
an extract with high antioxidant activity, the akound treatment should be performed during
1 h with 2.0 % biomass and 0 % ethanol. After feedrying the liquid extract obtained in
this condition, 0.4 g of dry antioxidant extractsa@btained per gram of biomass. This extract

was used for the cookie formulation experiments.
[Insert Fig. 1 here]
3.2 Cookie dough characterization

Cookies quality is influenced by several factongshsas the quality and amount of
ingredients used, processing conditions and mogldinthe dough, as well as baking and

13
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cooling of the cookies. Among those factors, dotiggology is of considerable importance in
cookies manufacture as it influences the dough mabiity and the final sensorial
characteristics. Doughs with extreme degrees ahrfass or softness will not process
satisfactorily on the dough forming equipment anltl ot yield adequate products (Manohar
& Rao, 2002).

In this work, cookies were shaped through a 3D foadter, where the main physical
properties involved can be divided into two categgr firstly the ones that affect the
extruding process, which includes the flow behawviand viscous modulusG(’) of the
dough; and secondly, the factors which influen@eahility to support the three dimensional
structure of the printed products or to maintagrshape and structure, such as the elastic
modulus G’), gel strength, among others (Yang, Zhang, Pral&siu, 2018).

Initially, cookies doughs were characterized thioagcreep-recovery test and texture
analysis. During the creep-recovery assay, a sisesgplied for a specific interval, it is then
removed, and the recovery is monitored for anotperiod. This property provides
information about the ability of the sheared andcrovextruded food-ink to recover;
therefore, the faster the recovery, the higher sli@elity should be expected. Likewise, less
strain during the test indicates a stronger abiitythe material to maintain the shape and
structure of printed products; which, however, \&Bo require higher extrusion rates (Yang,
Zhang, Fang, & Liu, 2019).

Figure 2a shows the creep—recovery curves exprégsacdtompliance variatiod) as
a function of time, which is the ratio of the defmtiony to the applied stress Dough
deformation could be used to characterize its gtrgrwhich means the harder the dough, the
higher the amount of energy required to achievesime deformation when compared with a
softer dough. Accordingly, if a material has a hggmpliance, it will present low rigidity
and high deformation or strain; and, consequetiiyter extrudability (Ahmed, 2015). The
cookie dough incorporated with encapsulated extsdmiwed higher maximal strain or
compliance with the applied stress, while the orepared with microalgae biomass led to a
more stiff dough (Table 3). The replacement of alsramount of flour by microalgae
biomass resulted in the inclusion of a complex dgalal ingredient, rich in proteins and
polysaccharides. These molecules have an importdatin the water absorption process,
which promote the increase of dough firmness (Butaet al., 2014; Gouveia, Batista,
Miranda, Empis, & Raymundo, 2007; Gouveia et aD0&. On the other hand, the

encapsulated antioxidant extract dough led to astructured network due to the water
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molecules present among the calcium-alginate m@aads, resulting in a reduction of its
viscosity. Furthermore, the addition of the freéi@adant extract did not change the dough
behaviour, matching with the one observed for th@rmol cookies.

The creep and recovery stages were fitted to Bisrgerodel (Egq. 2 and 3,
respectively) and results are shown in Table 3. ifk&antaneous elastic compliandgc),
viscoelastic compliancel{c) and the steady viscosityif corroborated with Figure 2a.
Biomass cookie dough revealed highand lower compliances, which means that the higher
the steady-state viscosity, the higher the resistda deformation. The opposite behaviour
was observed for the encapsulated extract douglthwidresented higher compliances and
lower steady-state viscosity; therefore, less tasce to deformation.

Contrastingly, retardation timel)(did not show the same behaviour, and only the
biomass and the encapsulated extract doughs wgreficantly different p < 0.05).
However, this parameter agrees with the compliaasalts. The retardation timg) (mainly
indicates the time required for the sample straiddcay to the initial value atel/and the
less stiff dough (encapsulated extract) showed dnigh). The recovery phase exhibited
similar behaviour, with elastic complianc®d), viscoelastic compliancdy) and the steady
viscosity {io) following the same tendency. More stiff dougheetéonger to deform, and also
to recover their structure. Nevertheless, despite differences, the elastic portion of the

dough did not differ significantlyp(< 0.05) among all formulations.

[Insert Fig. 2 here]
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Table 3. Creep-recovery analysis of the cookiegdsincorporated with different forms Af platensisResults are presented as meatandard deviation.

Creep
Dough Compliance (1/Pa) Retafdajon time (s) V?;if;@e(npfa?;) Max. Strain (%)  Max. Compliance (UPa) I
Joc Jic 1c 1o
Control 0.0037 £0.0002  0.0256+ 0.0009 29.4% +3.26 12169+ 11 3.09+0.06 0.058+ 0.001 0.99
Biomass 0.0017+0.0003  0.012%+ 0.0018 31.60+ 1.15 24343+ 4073 1.48+ 0.24 0.028+ 0.004 0.99
Free Extract 0.0039 + 0.0003  0.0265+ 0.0023 28.7%+ 1.56 11827+ 27 3.18+0.14 0.058+ 0.003 0.99
Encapsulated Ext.  0.0073 +0.0007  0.048%4+ 0.0037 22.29+ 1.48 7118+ 741 5.54+ 0.50 0.109+ 0.002 0.99
Recovery
Dough Compliance (1/Pa) Retardationtime (s)  Equilibrium strain Equilibrium Relative elastic portion r?
Joc Jie AR (%) compliance (1/Pa) (%)
Control 0.0053 +0.0002  0.0169+ 0.0011 87.00+ 6.40 1.82+0.01 0.033+ 0.0003 58.90+ 1.60 0.90
Biomass 0.0033+0.0006  0.010%* 0.0018 102.70+ 5.20 0.68+0.11 0.012+ 0.002 44.60+ 0.20 0.93
Free Extract 0.0062 +0.0002  0.0179+ 0.0000 85.50+ 2.70 1.86+0.15 0.033+ 0.003 56.70+ 2.20 0.95
Encapsulated Ext.  0.011%+0.0004  0.029%4+ 0.0004 64.60+ 3.20 3.18+0.55 0.058+ 0.010 53.30+ 10.50 0.94
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Concerning the texture analysis, all doughs incaeal with different forms oA.
platensispresented significant differencgs< 0.05) when compared to the control. As it can
be observed in Fig. 3, the biomass cookie douglwstidiigher hardness, which agrees with
the creep-recovery results. Nevertheless, the dougtporated with the free extract, which
had similar rheological behaviour as the controfhileited a low hardness value. This
decrease of hardness could be attributed to theéceedflour mass and its substitution for
components of the freeze-dried antioxidant extrélsbse constituents may further bind with
water molecules through hydrogen bonds, suppresbmgvater absorption and the gluten
protein swelling. Consequently, the free extraatgiodisplayed a lower network strength,

comparable to the one with encapsulated extraat (liang, Saeed, Lan, & Qin, 2019).

[Insert Fig. 3 here]

The dough properties during the cooking processewevaluated through a
temperature-sweep analysis and results revealgédthibaobtained profiles were consistent
with that of the creep-recovery test. Figure 2b &uwdshow the viscoelastic properties
(complex modulus and tanagainst temperature increas® reflects both contribution of
elastic G’) and viscous &) moduli; while taw, which character prevail, is defined as
G”/G’. In the mechanical spectra, éawas lower than 1@ > G”) for all temperatures,
indicating that all doughs behave as a gel-likeemat The dough incorporated with.
platensisbiomass exhibited high&* values, as the biomass composition promotes a more
structured network. Oppositely, the encapsulatedaexdough presented low&* values
due to its reduced viscosity. Nonetheless) spectra did not show great differences, as the
proportion between elastic and viscous moduli wada for all formulations.

Moreover, throughout the temperature-sweep prafilis also possible to detect a
continuous decrease @* up to 40 °C, which may be related to the meltihthe butter that
accounts for a significant part (25 g/100 g) of tmeigh, as equally observed by Kim et al.
(2019). Afterwards, the modulus remains almost orisuntil 105-110 °C, when it starts to
increase. Nevertheless, this phenomenon occurred &iwer temperature for cookies
incorporated with encapsulated extract (~ 90 °CheWthe temperature rose to above 120

°C, a further decrease d&' and G” was detected. It is inferred that the pyrolytic
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decomposition and leaching of the amylose in fetarch granule were induced, which may

have caused the corresponding decrease (Kim 04l9).

3.3 3D printing and post-processing

3D food printing is a digital manufacturing techogy, which is used to fabricate
three-dimensional structures in a layer-by-layenneas, using liquid-, gel-, or powder-type
food materials as a printing medium; it includeéhsteps: modelling, 3D printing and post-
processing. A range of 3D printing methods havenhbatized for food printing, such as
selective laser sintering/hot air sintering, hotitmextrusion/room temperature extrusion,
binder jetting, and inkjet printing (Holland, Tuck,Foster, 2018; Sun, Zhou, Huang, Fuh, &
Hong, 2015). Among them, extrusion-based 3D foddtipg is the most widely adopted
method, which consists of a material being extruthedugh a nozzle moving i, y- andz
direction, building up a structure layer-by-layiin et al., 2019; Sun et al., 2018).

For a successful 3D printing step, it is requirechaterial which can be smoothly
extruded through the nozzle and, at the same tare support the weight of the subsequent
printed layers without deformation. In this contexbe knowledge of the material’s
rheological and mechanical profiles is imperatiwe a@chieve proper extrudability and
structure stability during the process (Liu, ZhaBbandari, & Yang, 2018b; Wang, Zhang,
Bhandari, & Yang, 2018; Yang et al.,, 2018). Funthere, 3D food printing is not only
affected by the physicochemical properties of tigredients used, but also by the process
parameters, such as nozzle moving speed, extruaien nozzle diameter, and layer and
nozzle heights. This correlation between the foodntila attributes and the operational
conditions influences the printing precision arfils, is a key factor in the end-product
quality (Dankar et al., 2018; He, Zhang, & Fangl20Pérez et al., 2019).

Lastly, the printed food pieces may require a ferrghost-deposition cooking process
(e.g. baking and boiling), which involves differeletvels of heat penetration in the food
matrix; resulting in texture modifications and, piiy, misshapen structures (Dankar et al.,
2018; Sun et al., 2018). Cookie dough is a maténati unavoidably requires post-processing;
however, it rapidly deforms after baking. Kiet al. (2019) have studied the addition of
hydrocolloids as a structuring agent, aiming topsaps product deformation in the high-
temperature environment of the post-processing, stggreas maintaining the ingredients

and product characteristics of the desired cook@mthan gum in the concentration of 0.5 %
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was reported to promote the best shape accuratthyeddelected 3D printed model after the
baking process; therefore, it was chosen to devblefunctional cookies of this work.

3D food printing is a tool which allows the creatiof unique, innovative, products
that other methods cannot emulate. Among numergications, this technology is
becoming popular due to the possibility to desigods with appealing forms, new textures
and personalized nutritional values, where severalmaterials can be blended according to
individual's physical and nutritional status. Additally, this 3D printing flexibility enables
the use of alternative ingredients in food procegssuch as microalgae, insects and fungi; in
the production of tasty, healthy and tailored f®¢&n, Guo, Zhang, & Zhong, 2019; Godoi,
Prakash, & Bhandari, 2016; Lille, Nurmela, NordluMets€a-Kortelainen, & Sozer, 2018;
Severini, Azzollini, Albenzio, & Derossi, 2018; VopAn, Wong, Zhang, & Chua, 2019).

Fig. 4 shows the 3D printed cookies incorporatedhwdifferent forms of the

microalgaA. platensigight after the 3D printing step and after thetgm®cessing treatment.

[Insert Fig. 4 here]

All 3D printed cookies presented shape fidelity the range of 100 + 5.0 %,
demonstrating dimensional consistency with the 3Bbdeh (Fig. 5a). The effect of the
cooking process over the cookies is showed in Blig.Upon baking, the cookie thickness
varied from 3.37 % for the biomass cookies, un8l22 % for the encapsulated extract
cookies. The increase in this dimension is reldatedhe gas production from the water
vaporization and a higher dough elasticity, whickplains the fact that the cookies
incorporated with fresh alginate microbeads haveealargement superior to the other
formulations, corroborating the results obtainedhe rheology analyses (Chevallier, Della
Valle, Colonna, Broyart, & Trystram, 2002).

Oppositely, the diameter of the cookies had a @mnalhriation after the post-
processing treatment, as it can also be observdeiginbb. Except for the encapsulated
extract cookies, which suffered a shrinkage of adod % probably due to the high water
loss, all the other formulations suffered a posiiinfluence of the temperature during baking.
The heat promotes the melting of fat, which confdesticity and an ease flow, resulting in
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an initial spreading followed by a width retractien the end of the process (Walker,
Seetharaman, & Goldstein, 2012).

[Insert Fig. 5 here]

3.4 Cookies physical-chemical characterization

A number of parameters can be scrutinized from thadaokies that are of crucial
importance to determine their adequacy. Coloumisiribute which impacts food quality,
contributing to consumer’s attraction to a produthe incorporation ofA. platensisin
different forms into cookie doughs stimulated ardase in luminosity when compared to the
control, which was more prominent in the biomass faee extract cookies (Fig. 6). Biomass
cookies were distinguished by the microalga gresmlity, showing negative values af;
while the free extract cookies tended to the blolewr, represented by the C-phycocyanin

distinctive pigmentation (Lucas, Morais, Santo&sta, 2018).

[Insert Fig. 6 here]

Table 4 presents the total colour differenceS*) between the raw dough and baked
cookies, as well as the differences for each foatruh over 30 days of storage tim&.
platensiscookies showed significantly colour variation ugzaking, withAE* varying from
17.47 to 25.50. This outcome may be explained piiynhy the browning of cookie surface
(lightness decrease and colour parameter increpsesibly due to formation of Maillard
reaction products (MRP) through the interactiorrexfucing sugars with proteins, but also
possibly owing to starch dextrinization and sugaramelization. Moreover, changes in
tonality may be related to pigment loss upon exposa high temperatures (Batista et al.,
2017; Chevallier et al., 2002).

On the other hand, along the conservation time¢c@dkie formulations presented a
low AE*, principally the encapsulated extract cookie. Adotg to Mokrzycki & Tatol
(2011), AE* values between 1 and 2 indicate that only expee@robservers can notice a
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colour difference, and values between 2 and 3.g9estgthat an inexperienced observer is
also able to see the difference. Hence, it is ptss$o conclude that the encapsulationAof
platensisextract improved the cookie colour stability duritige 30 days of storage time,

when compared to other formulations.

Table 4. Total colour variatiomMg*) between cooked and raw cookie samples and calaibility

along conservation time.

Total colour difference (AE*) Raw vs. Baked 24 h vs. 30 days
Control 9.71 2.85
Biomass 25.50 2.43
Free Extract 25.29 2.12
Encapsulated Extract 17.47 1.30

Another essential physical stability factor, whigikes an identity to a food product,
is the texture (Carter, Galloway, Campbell, & CgrB®15). In this work, the cookie’s texture
was evaluated through a penetration test, andethdts are represented in Fig. 7. As it has
been stated for the cookie dough texture analgsis ¢ection 3.2), the additionAfplatensis
biomass promoted an increase in the cookie hardrdessrsely, the incorporation of
microalgae antioxidant extract in fresh alginatensibeads resulted in a softer texture, which
it was expected considering the water moleculesgmteamong the microparticles. Finally,
over the 30 days of storage time, there was nafggnt difference p > 0.05) in the cookie
texture for all the developed formulations.

The incorporation ofA. platensisinto cookies by conventional methods has been
described in the literature by a few authors, priomgodifferent effects on the final product
texture. Onacik-Gur and co-workers (2018) evaluatedaddition of 1 %, 2 % and 3 % of
microalga powder and reported a decrease in th&ieodardness with the increase of
microalga concentration. On the other hand, Mamivéka-Lesiak and co-workers (2017)
incorporated different powder amounts of the sapexies into shortbread biscuits, which
promoted an increase in the cookie hardness dirpatportional to the addition of microalga
powder; therefore, corroborating with the resutiarfd for the 3D printed cookies of this
study.

Concomitantly with the food texture, water activigy) is also a significant parameter

regarding the conservation of low moisture cookticularly for the maintenance of a
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crispy texture. Furthermore, the food physical-cleaimand microbiological stability depend
greatly on the water content and its interactiothwood ingredients. Water activity is a
measure of the availability of water molecules ritee into microbial, enzymatic or chemical
reactions. Therefore, this parameter has been tesadsess the potential microbial growth
and chemical stability of foods after manufactiirés established that bacteria do not grow at
ay values of 0.80 or below, while the limit for mowdd yeast growth is 0.6 (Hough. Buera,
Chirife, & Moro, 2001; Khouryieh & Aramouni, 2012As Fig. 7 shows, all cookie
formulations presentedl, values below 0.3 throughout the 30 days of storiaglkgating high

microbiological stability.

[Insert Fig. 7 here]

3.4.1 Antioxidant activity

The microalgaA. platensisis recognized to have notable free radical scangng
properties and antioxidant activity, due to thespreee of natural pigments and other
bioactive compounds in its composition. Its liglathesting protein-pigment complexes
called phycobilisomes are composed by phycobilgpnst, where C-phycocyanin and
allophycocyanin are considered the most importawetsoMoreover, this microalga contains
phenolic compounds and a spectrum of natural mixedotene and xanthophyll
phytopigments that, together with phycocyanin, sdenbe related to its distinguished
antioxidant activity (Batista et al., 2017; Zaidatdmad, & Sharaf, 2015).

The 3D printed cookies developed in this work haeirt antioxidant capacity
evaluated through the ORAC and ABTS assays aftemptst-processing step and after 30
days of storage (Fig. 8). After the storage peribd,encapsulated extract cookie exhibited a
significantly higher § < 0.05) ORAC value compared to all other formwias, showing its
improvement against processing and environmentébifea On the other hand, no significant
difference between the formulations was found f&TS& assay. One possible explanation for
this discrepancy could be due to the differencegshm mechanism of action of those
antioxidant analyses. The ORAC assay measuresffthegyaof antioxidative compounds to
neutralize the free radicals over a period of tisxegounting for any potential lag phases in

antioxidant activity rather than providing a mea&snent of only fast acting antioxidants;
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whereas the ABTS assay neutralize free radicala giarticular point of time without
accounting for slow-acting antioxidants (Nayak, ,l&uTang, 2015).

Additionally, it is noticeable that antioxidant @ity was also found for the cookies
with no incorporation ofA. platensiscontrol). Cookies are usually prepared with redgci
sugars and a protein source, which leads to thedtion of MRPs. Those compounds are
one of the main responsible for the browning precgsaracteristic of many foods, and it has
been associated to an increase of their antioxipgat@ntial (Nooshkam, Varidi, & Bashash,
2019; Yalmaz & Toledo, 2005).

According to Manzocco et al. (2001), it can beestahat in the development of the
Maillard reaction, there is a positive correlatioetween colour and antioxidant properties.
This correlation was found in foods where Maillaghction was the sole or the prevalent
event related to the antioxidant activity. Sucltwmstance generally occurs in food products
with no or low content of naturally occurring amtidants; which means that eventual
changes in the antioxidant capacity upon procesaiegonly due to the formation of heat-
induced antioxidants. Given that, the antioxidagacity found for the control cookies could
be explained by the formation of MRPs, as antioxidaompounds are absent in its

composition.

[Insert Fig. 8 here]

4. Conclusions

The microalgdA. platensisvas used as a source of antioxidants in the dewedopof
3D printed cookies, based on functional food-irlKse antioxidant extraction was optimized
through a DoE approach. Optimal conditions wereekthaction, with 0 % ethanol and 2.0 %
biomass. All cookie dough formulations were suiafdr extrusion, forming a homogenous
filament with a diameter close to the nozzle apertand presenting dimensional consistency
with the 3D model after the post-deposition steprthiermore, the fortification withA.
platensisresulted in 3D printed cookies with an innovatagpearance. The encapsulation of
the antioxidant extract was capable of improving @ntioxidant activity and colour stability
along the storage time when compared to all otlemdlations. Therefore, cookies
developed in a 3D printer could be considered aming alternative for the incorporation of
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new ingredients, such as microalgae, to obtain welntunctional food with antioxidant

properties.
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Figure Captions

Fig. 1. Response surfaces of the biomass and ethanol dosto@ms combined effect iA.

platensis antioxidant activity and TPC.

Fig. 2. Dough rheology analyses. (c) Creep-recoceryes and temperature-sweep profiles

represented bg* (b) and taf (c) against temperature.

Fig. 3. Texture analysis of the cookie doughs ipocated with different forms oA.
platensis.Results are presented as mean + standard devidtienterm “ns” denotes a not

statistically significant difference.

Fig 4. 3D printed cookies incorporated with diffierdorms ofA. platensis First row: after

the 3D printing step; second row: after the balpnacess.

Fig 5. (a) Shape fidelity of the raw 3D printed k®s and (b) Effect of the cooking process
on the 3D cookies measures. Results are presestattan + standard deviation. The term

“ns” denotes a not statistically significant diéece.

Fig. 6.Colour parameters*, a* andb* for the raw cookie doughs and for the baked caokie
after 24 h and 30 days of storage. a) Raw douglhaked cookies after 24 h and c) baked
cookies after 30 days. Results are presented as tnetandard deviation. For results with

the same letter, the difference between the meamatistatistically significant.

Fig. 7. Texture (a) and water activity (b) analyséthe 3D printed cookies incorporated with
different A. platensisforms over 30 days of storage time. Results aesgmted as mean *

standard deviation. The label “*” denotes a sttty significant difference.

Fig 8. Antioxidant activity of the 3D printed co@s incorporated with differem®. platensis
forms over 30 days of storage time. Results aregmted as mean + standard deviation. The
label “*” denotes a difference statistically sigoént with respect to other formulations at the

same sampling time (30 days).
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Antioxidant extraction from the microalga A. platensis was optimised using DoE
Edible inks were made using encapsul ated microal gae extracts and food hydrocolloids
All cookie dough formulations (edible inks) were suitable for 3D food printing

3D printed cookies exhibited colour, texture and microbiological stability over time

Extract encapsulation improved cookies antioxidant potential and colour stability
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